關於 Model Dermatology
Model Dermatology(包名:com.phonegap.whichderm)開發者是Iderma international Inc.,Model Dermatology的最新版本14.9.75更新時間為2024年09月16日。Model Dermatol – 皮膚病,皮膚癌的分類是醫療。您可以查看Model Dermatol – 皮膚病,皮膚癌的開發者下的所有應用並找到Model Dermatol – 皮膚病,皮膚癌在安卓上的164個相似應用。目前這個應用免費。該應用可以從APKPure.fo或Google Play下載到Android 7.0+。apkpure.fo的所有APK/XAPK文檔都是原始文檔並且100%安全下載的資源。
人工智慧可以分析提供的照片並立即幫助查找有關皮膚問題的信息。該算法提供有關皮膚疾病(如疣、帶狀皰疹)、皮膚癌(如黑色素瘤)和其他皮膚疹(如蕁麻疹)的相關醫療信息。在2022年德國消費者組織Stiftung Warentest的評測中,該應用的滿意度評分僅略低於付費遠程醫學皮膚科服務。
◉ 拍攝皮膚照片並提交。裁剪後的圖像會被傳輸,但我們不會存儲您的數據。
◉ 人工智能提供描述皮膚病和皮膚癌(例如黑色素瘤)相關體徵和症狀的網站鏈接。
◉ 該算法可以對186種皮膚病的圖像進行分類,包括常見的皮膚病類型(如特應性皮炎、蕁麻疹、濕疹、牛皮癬、痤瘡、酒渣鼻、甲癬、黑色素瘤、痣)。
◉ 算法使用免費,共支持104種語言。
🞹 出版物
我們使用“Model Dermatology”算法。分類器的性能已發表在幾家著名的醫學期刊上。許多合作研究已與多家國際醫院進行,包括 Seoul National University, Ulsan University, Yonsei University, Hallym University, Inje University, Stanford, MSKCC 和 Ospedale San Bortolo。
- Assessment of Deep Neural Networks for the Diagnosis of Benign and Malignant Skin Neoplasms in Comparison with Dermatologists: A Retrospective Validation Study. PLOS Medicine, 2020
- Performance of a deep neural network in teledermatology: a single center prospective diagnostic study. J Eur Acad Dermatol Venereol. 2020
- Keratinocytic Skin Cancer Detection on the Face using Region-based Convolutional Neural Network. JAMA Dermatol. 2019
- Seems to be low, but is it really poor? : Need for Cohort and Comparative studies to Clarify Performance of Deep Neural Networks. J Invest Dermatol. 2020
- Multiclass Artificial Intelligence in Dermatology: Progress but Still Room for Improvement. J Invest Dermatol. 2020
- Augment Intelligence Dermatology : Deep Neural Networks Empower Medical Professionals in Diagnosing Skin Cancer and Predicting Treatment Options for 134 Skin Disorders. J Invest Dermatol. 2020
- Interpretation of the Outputs of Deep Learning Model trained with Skin Cancer Dataset. J Invest Dermatol. 2018
- Automated Dermatological Diagnosis: Hype or Reality? J Invest Dermatol. 2018
- Classification of the Clinical Images for Benign and Malignant Cutaneous Tumors Using a Deep Learning Algorithm. J Invest Dermatol. 2018
- Augmenting the Accuracy of Trainee Doctors in Diagnosing Skin Lesions Suspected of Skin Neoplasms in a Real-World Setting: A Prospective Controlled Before and After Study. PLOS One, 2022
- Evaluation of Artificial Intelligence-assisted Diagnosis of Skin Neoplasms – a single-center, paralleled, unmasked, randomized controlled trial. J Invest Dermatol. 2022
🞹 免責聲明
- 除了使用此應用程序之外,在做出任何醫療決定之前,請尋求醫生的建議。
- 僅根據臨床圖像診斷皮膚癌或皮膚病可能會漏掉多達 10% 的病例。因此,此應用程序不能替代標準護理(親自檢查)。
- 該算法的預測不是皮膚癌或皮膚病的最終診斷。僅供參考,提供個性化醫療信息
◉ 拍攝皮膚照片並提交。裁剪後的圖像會被傳輸,但我們不會存儲您的數據。
◉ 人工智能提供描述皮膚病和皮膚癌(例如黑色素瘤)相關體徵和症狀的網站鏈接。
◉ 該算法可以對186種皮膚病的圖像進行分類,包括常見的皮膚病類型(如特應性皮炎、蕁麻疹、濕疹、牛皮癬、痤瘡、酒渣鼻、甲癬、黑色素瘤、痣)。
◉ 算法使用免費,共支持104種語言。
🞹 出版物
我們使用“Model Dermatology”算法。分類器的性能已發表在幾家著名的醫學期刊上。許多合作研究已與多家國際醫院進行,包括 Seoul National University, Ulsan University, Yonsei University, Hallym University, Inje University, Stanford, MSKCC 和 Ospedale San Bortolo。
- Assessment of Deep Neural Networks for the Diagnosis of Benign and Malignant Skin Neoplasms in Comparison with Dermatologists: A Retrospective Validation Study. PLOS Medicine, 2020
- Performance of a deep neural network in teledermatology: a single center prospective diagnostic study. J Eur Acad Dermatol Venereol. 2020
- Keratinocytic Skin Cancer Detection on the Face using Region-based Convolutional Neural Network. JAMA Dermatol. 2019
- Seems to be low, but is it really poor? : Need for Cohort and Comparative studies to Clarify Performance of Deep Neural Networks. J Invest Dermatol. 2020
- Multiclass Artificial Intelligence in Dermatology: Progress but Still Room for Improvement. J Invest Dermatol. 2020
- Augment Intelligence Dermatology : Deep Neural Networks Empower Medical Professionals in Diagnosing Skin Cancer and Predicting Treatment Options for 134 Skin Disorders. J Invest Dermatol. 2020
- Interpretation of the Outputs of Deep Learning Model trained with Skin Cancer Dataset. J Invest Dermatol. 2018
- Automated Dermatological Diagnosis: Hype or Reality? J Invest Dermatol. 2018
- Classification of the Clinical Images for Benign and Malignant Cutaneous Tumors Using a Deep Learning Algorithm. J Invest Dermatol. 2018
- Augmenting the Accuracy of Trainee Doctors in Diagnosing Skin Lesions Suspected of Skin Neoplasms in a Real-World Setting: A Prospective Controlled Before and After Study. PLOS One, 2022
- Evaluation of Artificial Intelligence-assisted Diagnosis of Skin Neoplasms – a single-center, paralleled, unmasked, randomized controlled trial. J Invest Dermatol. 2022
🞹 免責聲明
- 除了使用此應用程序之外,在做出任何醫療決定之前,請尋求醫生的建議。
- 僅根據臨床圖像診斷皮膚癌或皮膚病可能會漏掉多達 10% 的病例。因此,此應用程序不能替代標準護理(親自檢查)。
- 該算法的預測不是皮膚癌或皮膚病的最終診斷。僅供參考,提供個性化醫療信息
查看更多
歷史版本 更多
Model Dermatol – 皮膚病,皮膚癌
14.9.75
XAPK
APKs
2024年09月16日
15.23 MB
Requires Android: Android 7.0+
Screen DPI: nodpi
SHA1: e62617b4c6d9f76554a72f5d9872a5bc24d4447b
Size: 15.23 MB
Model Dermatol – 皮膚病,皮膚癌
14.9.60
XAPK
APKs
2024年09月10日
19.33 MB
Model Dermatol – 皮膚病,皮膚癌
14.9.51
XAPK
APKs
2024年09月06日
19.32 MB
Requires Android: Android 7.0+
Screen DPI: nodpi
SHA1: 9d18b3f0b076fe3cb6477c67dedf22efe34f8099
Size: 19.32 MB
Model Dermatol – 皮膚病,皮膚癌
14.9.50
XAPK
APKs
2024年09月05日
15.25 MB
Requires Android: Android 7.0+
Screen DPI: nodpi
SHA1: 76e298b9b4c086ee6a69480cbdada35706389f70
Size: 15.25 MB
更多資訊
更新日期:
2024-09-16
最新版本:
14.9.75
請求更新:
Available on:
系統要求:
Android 7.0+
舉報: